Athens High School Course Syllabus 2022-2023

Course Name: Precalculus

Teacher: Mrs. Begley

Materials: Notebook, Graphing Calculator

Prerequisite: Algebra II Honors

*Academic performance in prerequisite classes will be taken into account as well as faculty recommendation

Course Description and Objectives

This course will introduce students to those branches of mathematics which seem to be most important in making a transition to college-level mathematics. There will be an in-depth study of functions, trigonometry, vectors and parametric equations, polar coordinates and complex numbers, exponential and logarithmic functions, sequences and series, probability, statistics and data analysis, and an introduction to calculus. Students taking this course for College Credit Plus will earn 6 college credits of mathematics through Hocking College. The course content will be aligned to the Common Core State Standards. A Texas Instruments graphing calculator is strongly recommended.

Textbook Name:	Precalculus
	Copyright 2014 McGraw-Hill Education
	ISBN: 978-0-07-664183-3

Grading	
Tests/Quizzes – Major 80%	100 points
Notebook – Major 80%	100 points
Homework – Minor 20%	6 points

Grading Scale: The scale in the handbooks, as adopted by the Athens City Schools Board of Education, will be used to determine letter grades

CC+ Final Grade: The final grade for students taking Precalculus for college credit will be calculated by finding the average of all four nine weeks grades. This will be the grade that will go on the college transcript. There will not be a first semester and second semester grade.

Last Day to Drop: The last day for students to drop this course without penalty for CC+ credit is **September 16, 2021**. All drop forms must be received by Hocking College no later than 5:00 PM on this day.

Classroom Rules/Policies

- 1. Show Respect
- 2. Be on time
- 3. Bring necessary materials
- 4. Do not use or have out cell phones

Keys to being successful

- 1. High Attendance Rate (just like college)
- 2. Ask Questions
- 3. Ask for extra help as needed (Academic Coaching, etc.)
- 4. Do Homework!!!

Absence

Students should make arrangements for make-up work the day they return to school. A "0" will be recorded if no arrangements are made. A student will have the same number of days to make up their work and/or tests as excused absence (example: 4 days absent- 4 days to make up work)

Review Days are a luxury. If you are not present in class during these days you are still required to take the test or quiz on the assigned date. You must get approval from me in advance to not take a test or quiz on the assigned day if you are present in class.

<u>Testing</u>

There is no extended time given on a test unless you have accommodations for testing that allows extended time. If you do have accommodations, I need to be made aware of those before the first test/quiz. Multiple versions of a test/quiz can be given. Make-up tests/quizzes can be different than the original version given on the assigned date. Retakes will NOT be given for any test/quiz.

Approximate list of topics to be covered

Third Grading Period	Fourth Grading Period	
 Parabolas 	 Sequences, Series, and Sigma Notation 	
 Ellipses and Circles 	 Arithmetic Sequences and Series 	
 Hyperbolas 	 Geometric Sequences and Series 	
 Rotations of Conic Sections 	 Mathematical Induction 	
 Parametric Equations 	 The Binomial Theorem 	
 Introduction to Vectors 	 Functions as Infinite Series 	
 Vectors in the Coordinate Plane 	 Descriptive Statistics 	
 Dot Products and Vector Projections 	Probability Distributions	
 Vectors in Three-Dimensional Space 	 The Normal Distribution 	
 Dot and Cross Products of Vectors in 	 The Central Limit Theorem 	
Space	 Confidence Intervals 	
 Polar Coordinates 	 Hypothesis Testing 	
 Graphs of Polar Equations 	 Correlation and Linear Regression 	
 Polar and Rectangular Forms of 	 Estimating Limits Graphically 	
Equations	 Evaluating Limits Algebraically 	
 Polar Forms of Conic Sections 	 Tangent Lines and Velocity 	
 Complex Numbers and DeMoivre's 	 Derivatives 	
Theorem	 Area Under a Curve and Integration 	
	 The Fundamental Theorem of Calculus 	